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1. INTRODUCTION

The adiabatic auroral arc model (Chiu and Schulz, 1978; Chiu and Cornwall,

1980; Chiu et al., 1981; Lyons, 1980, 1981] is a reasonable if incomplete

description of a time-independent auroral arc driven by a large-scale parallel

potential drop (as seen experimentally; see, e.g., Reiff et al. [1988]). Even

the static properties of the model are difficult to investigate because the

defining equations are nonlinear, but recently Cornwall [1988] has found some

exact two-dimensional (latitude and longitude; height dependence suppressed by

height integration) stationary solutions.

The next step in investigating the model is to look at the low-frequency

dynamics, which is expected to show unstable Kelvin-Helmholtz (e.g., Hallinan

and Davis, 1970] modes and possibly other interchange modes as well. Several

physically different time scales are contained in the adiabatic model, and

they all turn out to be in the range of tens of seconds:

eN
Ionization growth time TI = - 30 sec (1.1)

BA2
E x B drift transport time T = -

= 50 sec (1.2)

-1
Dissociative recombination time TR - (2aN) = 50 sec (1.3)

In these equations, c, e, and B are the speed of light, the electronic charge,

and the Earth's magnetic field, respectively, and the other quantities and

their nominal values are:

Height-integrated ionospheric plasma density N 1012 cm- 2

Number of ion pairs per incident auroral primary F 30

-1 -1
Current-potential parameter Q = 0.1-0.2 cm sec (see (1.4) below)

Nominal parallel potential drop A 4 a 1.5 kV

Height-integrated dissociative recombination rate a 
10 14cm-2 sec-1
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Inverted-V scale length A = 40 km (see (2.7) below)

Many of these parameters can deviate substantially from their nominal values,

especially as the parallel potential drop changes, and so one or another of

the three time scales in (1.1,2,3) may dominate (i.e., be smallest). For

example, a low-energy aurora may not penetrate to the heights where

dissociative recombination is important, so a will be much smaller then

nominal. Or just after an aurora turns on in the midnight ionosphere, N may

be an order of magnitude smaller than nominal, and again recombination is

unimportant. In writing the nominal parameter values we have not attempted to

construct an internally consistent set; later in applications we will be more

precise.

There are, of course, a host of other time and space scales that one might

invoke in auroral dynamics associated with local wave modes: (drift, ion

cyclotron, lower hybrid, ... ) or with magnetospheric phenomena (wave, particle

quarter-bounce times, polarization currents, Pc 1-5 waves, reconnection time

scales). Also there are correspondingly many studies of phenomena associated

with these scales, as well as the ones that concern us; for example, Basu et

al. [1988], Gorney (1989], Weimer et al. [1985, 1987] study the spatial scales

of auroras from 0.1 to 100 km in the ionosphere or magnetosphere. Theories to

explain the resulting power spectra are reviewed in Kintner and Seyler (1985];

Keskinen and Ossakow [1983]; Fejer (1989]; and Huba [1989]. In most cases

theoretical analysis does not go beyond linear instabilities, and is then

supplemented with large computer simulations, such as that of Mitchell et al.

(1985] for high-latitude F-layer instabilities and of Keskinen et al. [1988]

for Kelvin-Helmholtz (KH) instability in the high-latitude ionosphere. Linear

analysis is complicated by the need to account for the destabiLizing effects

of auroral gradients, whether on large scales for such modes as Kelvin-

Helmholtz, or on small scales (e.g., Ganguli et al. [1985]; Basu and Coppi

(1989]). The particular mechanisms we emphasize, namely a parallel current

driven by a parallel potential drop and the consequent ionization of the

auroral ionosphere, also have consequences on spatial scales larger than the

typical transverse width of an inverted-V, such as current oscillations on

scales of hundreds of km (Weimer et al., 1988] and modification of large-

scale convection fields (e.g., Blomberg and Marklund [1988]). Finally, these

mechanisms can react on the driving magnetospheric source, causing feedback
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effects which we do not attempt to analyze here [Lotku et al., 1987].

On the one hand we would like to incorporate all these effects into a

comprehensive model of time-dependent auroral dynamics, but so far that is out

of the question. On the other hand, there is as yet little theoretical work

and no simulations which include the specific effects mentioned above which

are the I.,llmarks of the adiabatic auroral model. The first is an auroral

parallel current J11 (positive upward) whose strength is linear in the

difference in potential between the ionosphere ( ) and the equator ( E):

1= Q(0-0E ) (1.4)

The second is an auroral ionization source, of strength rJ11/e, where r is the

number of electron-ion pairs produced by a single auroral primary. In

principle, r itself depends linearly on 4-0E (since r is the ratio of the

auroral primary energy to the energy needed to form a pair), but for the most

part in this report we will take r to be a given constant; this does not affect

any of our qualitative conclusions (cf. Cornwall (1988] who studied both cases

for r for the static auroral arc model) . The ionization sources we use in

this report, and their significant effects on auroral-ionospheric densities

that we find, are consistent with experimental studies of spatially structural

auroral ionization produced by precipitating electrons [Labelle et al., 1989].

The purpose of the present report is to study, in an analytical way, the

influence of the ionization source represented by J11 when recombination is

insufficient to bring about equilibrium; that is, when TR of (1.3) is long

compared to TI of (1.1). This can happen, in particular, for low-energy

auroras which deposit their energy at altitudes where dissociative

recombination is small. One might then expect that transport processes would

take over, yielding an equilibrium where ionization is transported to the

return-current region as fast as it is produced in the aurora. But we show

that this is generally impossible; there are always regions where horizontal

transport vanishes or is very small. There are then at least three

possibilities to control the growth of ionization in such a region: (1) the

region of small horizontal transport moves elsewhere; (2) vertical downward

transport to altitudes where recombination is effective takes place; (3) the

ionospheric potential 0 decreases, thus lowering the ionization source

strength (see (1.4)).
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In this report, we concentrate on possibilities (1) and (3) above, and we

will find that they indeed are important. As for possibility (2), vertical

transport, the projection of neutral winds along B in the auroral zone is too

small to be important, and the vertical component of such winds in the aurora

is upward (because of auroral heating). Upward winds act in the wrong

direction to bring excess ionization downward, but they can raise molecular

ions to greater altitudes, thus promoting dissociative recombination there.

But the upward velocity is only a few m/sec, too small to matter. It is true

that the upward vertical winds are deflected into horizontal flow which would

carry ionization out of the aurora, in a horizontal flow pattern which appears

to have a strong divergence, but the wind speeds in these cells is orly tens of

m/sec, too small to be important.

We will analyze the problem of ionization-driven auroral dynamics in two

ways. The first is traditional local perturbation theory, which yields a long-

wavelength growth rate with a term proportional to the ionization rate r.

Other terms enter at shorter wavelengths which we identify with corresponding

terms in the usual E X B -gradient-drift instability; one expects that in

general these transport terms tend to damp the instability, but this need not

always be the case. Finally, there are terms which represent the direct

influence of the parallel current J of (1.4). Their effect is not comparable

to parallel currents in the current-driven E x B -gradient-drift instability,

where a parallel current perturbation involves a density perturbation.

Evidently from (1.4) a perturbation in J is a perturbation in 0, which has

quite different consequences. It is more appropriate to describe our

instability as an ionization-driven E X B -gradient-drift instability.

Second, we are able to find some locally exact solutions to the full

nonlinear equations of the model. We call them "locally exact" because while

they are indeed exact solutions, the assumed spatial dependence (namely,

quadratic) of the height-integrated density N and the potential 4 is not

sufficiently general to admit extension to the entire auroral region out to

the return-current boundary. (There are one or two relatively uninteresting

globally exact time-dependent solutions, which we mention in Section 5.)

These locally exact solutions show the phenomena mentioned above, in which the

regions of small transport move and the ionospheric potential 0 decreases. As

time passes, these phenomena will begin to happen somewhere else in the

aurora, which thus shows a ceaseless pattern of movement. It will be
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interesting to study (as we intend to at a later date) the dynamics with a

computer, to go beyond the locally exact results.

What we have found so far gives several hints as to what might happen

beyond this locally exact description. First, a slight generalization of the

hypothesized spatial dependence for N and 0 yields four coupled nonlinear

ordinary differential equations in time which are not obviously integrable; if

they are in fact not integrable, their solution (and a fortiori more general

solutions with no restrictions on spatial dependence) will be chaotic.

Second, linear perturbation theory couples the ionization source to the E x B

-gradient-drift instability, and the latter, by itself, leads to development

of spatial structure at finer and finer scales, through a process of

bifurcation. This might happen in the full nonlinear model as well.

Finally, a comment on the role of recombination, which we assume is small
2

for purposes of this report. Because dissociative recombination depends on N

given enough time it can equilibrate any ionization source which grows less

rapidly with N. However, this cuts the other way too: in the midnight auroral

ionosphere during the absence of auroral activity, N is small enough so that

dissociative recombination is really quite small, and the time scale is much

larger than given in (1.3). When we speak of absence of equilibrium, we mean

that the time between auroral turn-on and recombination dominance is rather

long compared to the ionization time scale in (1.1).

The report is organized as follows: Section 2 sets the stage and

introduces the model equations. Section 3 gives the proof that there are

always regions where transport cannot balance ionization. Section 4 gives the

local perturbative analysis, and Section 5 gives the locally exact solutions.

An Appendix gives a slight generalization of Section 5's equations which may

have chaotic solutions.
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2. PRELItvdNARIES

The essence of the model is to leave out all phenomena taking place on

time scales much less than tens of seconds. For certain effects this can be

justified, while for others it may be an idealization.

Auroral electron (and even auroral proton) quarter-bounce times are

smaller than tens of seconds, so we will not account for delay times in

propagating particles from the source region to the ionosphere. (This is not

true for Alfven-wave bounce times, or wave periods, which are quite comparable

to our auroral time scales; it would be interesting to study the coupling of

the auroral ionosphere to ULF waves in a model similar to ours.) We can in

effect ignore polarization currents, whose effects compared to Pedersen

currents are in the ratio [Mitchell et al., 1985; Cornwall, 1988]

M
-- 0.1-0.2 

(2.1)
P

-l
where (o 0.1 sec is a typical frequency, IP is the height-integrated

Pedersen conductivity (=5-10 mho in an aurora) and CM = 10 farad is the height-

integrated magnetospheric capacitance:

CM = B f dz c2 (2.2)B 2 (2.22
41V

A

(here VA is the Alfven velocity and BI the ionospheric magnetic field).

Moreover, at these low frequencies the magnetosphere acts as an integrated

unit since wave and particle quarter-bounce frequencies are at least as large

as those that interest us. (Mitchell et al. [1985] and Keskinen et al. [1988]

have studied a case opoosite to ours, where no currents of the type (1.4) are

kept, but polarization currents are retained.) Similarly we treat the

ionosphere as a unit in altitude by height-integrating.

Which height region of the ionosphere we should integrate over depends on

the energy of the auroral primaries, which determines their penetration depth.

We will usually require

SC V (( (2.3)

where v is the ion-neutral collision frequency, and ! the ion (we assume o+ )
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gyrofrequency. The first inequality allows us to ignore polarization currents,

while the second allows us to drop Hall currents and to approximate the ion

drift velocity by that due to E x B drift. Inequality (2.3) implies that the

aurora does not penetrate below =150 km (corresponding to primary energies of
-i -i

only a key or so); for example, at 200 km V 3 sec , £ 200 sec As

for height integration of the recombination rate, this depends not only on the

dissociative-recombination coefficient a but also on the atomic ion-molecule

interchange rate at higher altitudes, which form the necessary molecular ions

from the preponderant 0 ions. Rather than introduce the extra complication

of ion-molecule interchange, we will consider only two cases: predomina'. a of

molecular ions and square-law recombination, or linear and relatively

unimportant recombination at higi.er altitudes.

With these assumptions, plus quasineutrality, the equations to be solved

are [Cornwall, 1988]:

-E P O ( E (2.4)

aN + . a 2 (2.5)
+ ~V V - (O- E) - N-No2

at -E -N e E

In these equations all vectors are two-dimensional, and we take the x

coordinate to point north and the y coordinate to point east; B is constant

and points vertically downward. The term -a(N 2_N 2) in the continuity0

equation (1.9) includes not only square-law dissociative recombination but

also any non-auroral ionization sources ( 0 2). In certain circumstances we

omit the term -Ct(N -N 2) from (2.5). In (2.5), the electric drift velocity is0

c " c

S B (EX b) -- (-ay*, ax) ; (2.6)
YE -B - B y x

it is divergence-free. As is well-known, the current-conservation equation

(2.4) defines a fundamental scale length A:

A2 - /Q (2.7)

with A of the order of several tens of km. Later we will see that V -drivenE

transport leads to a new scale length AT, given by
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A -A( Nce ) 1/2
T  FBEp (2.8)

which is nominally about (1/2)A. This is the gradient scale length where

transport processes begin to compete with ionization.
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3. ABSENCE OF GENERIC EQUILIBRIUM AT a = 0

In Cornwall (1988] it was shown that Eqs. (2.4,5) do have equilibrium

solutions of a special type, in which there is a functional relation between N

and 0 (and, of course, 4E is stationary). Given such a relation, the E X B

current NV is identically conserved, and disappears from (2.5) . These~E

equilibria can be two-dimensional and depend on a balance between ionization

sources (first term on the RHS of (2.5)) and recombination losses. Presumably

other equilibrium solutions exist in which N is not functionally related to 4,

but they are not known analytically; in that case, transport would also play a

role in balancing sources and losses.

The situation is different when recombination is unimportant. We show

that Eqs. (2.4,5) with a = 0 generically have no time-independent solutions

for an aurora. The reason is that there must be places where V .VN vanishes,-E ~

so there is nothing left to balance the ionization created by auroral

primaries.

An aurora generally has return-current boundaries: two lines, running more

or less east-west, along which 0 = 0 E' Inside this strip--the aurora itself--

we have 0-4E > 0. Outside the strip defined by these lines, the ionospheric

density N returns to an ambient value N , but it is bigger than N inside. It
0 0

follows that for every fixed y, N has at least one maximum in x, where a N =x

0. This equation, a N(x,y) = 0, defines a line in the aurora also going more

or less east-west. As we follow this line (say, by increasing y) we must

encounter at least one value of y where a N - 0 also, since otherwise N wouldy
continually increase or decrease as we go. So there is at least one point
where V E.V - 0 (because VN - 0), and by continuity a fini',e region including

this point where transport cannot balance auroral ionization.

We can similarly show that V E has zeroes or near-zeroes. For a generic

aurora, VEy changes sign in going from one return-current boundary to the

other at any fixed y; this corresponds to the characteristic change of sign of

E seen in auroras. The equation V Ey(x,y) = 0 again defines a line running

more or less east-west, characterized by an infinitesimal tangent vector de.

Along this line E - 0, and since V x E - 0, we have

,dtE - 0 (3.1)
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where the integral goes around the auroral zone. Since dt is more or less in

the y-direction, (3.1) implies there is at least one place where E = 0.y

Consequently there is one or more places where V E = 0 and transport is

negligible or zero. If recombination is small, again there is nothing to

balance the buildup of ionization produced by auroral primaries.

The equation

V-(NV ) = 0 (3.2)

has, as we have just seen, at least one solution, say at x = xo, y -y 0 (which

in general are functions of t). This equation is a continuous function of x

and y, so its zeroes generically define a line f(x,y) - 0 where transport is

negligible. In a finite region around each point of this line transport

cannot be in equilibrium with ionization prodi,-ion, so in general the auroral

region inside the return-current boundaries 1--s strips of finite width where

equilibrium is impossible.

Given these strips, what is the qualitative nature of the evolution in

time of the basic equations (2.4,5)? We begin to answer that question in the

next section with a study of linear perturbations, and then go on to fully

nonlinear and exact solutions.

16



4. LOCAL PERTURBATION THEORY

Local perturbation theory can be at best a heuristic guide, since the

essence of auroral dynamics is the steep density gradients related to ioniza-

tion and transport processes. Nonetheless, we will find here a useful

introduction to the exact solutions of the next section.

We linearize Eqs. (2.4,5), writing

i (k •x-O)t)
N = N (x) + N e - ~ (4.1)

i (k-x-wt)
0 0 o (x )  + i e - - (4.2)

The linearized equations are:

-i1+ B xl yo yl xo yl Nxo xlyo

-Q i + 2aN N L1:2 (4.3)
e o 1 e El

iN kV + i 1 k' o - k2iNo+ N - r N 0
1- -1 0,l lo A 2

0 (4.4)

0
2

The scale length A is defined via (2.7):0

2
A - p(N=N )/Q . (4.5)o p o

To find the dispersion relation, we drop the inhomogeneous perturbation 0 El'

Straightforward algebra gives:

(o-k.-Vo 2iXN + [ i FQ + - _ 0 ]~E x y y x o

(ik.Vo + V20o)
x 2 -2 (4.6)

[-ik-V + N (k +A 0)

Here VEo is the electric drift velocity (2.6) at 4 - ,o"

There are several potential instabilities in this formula. First, for
long wavelengths (kA 0 1) one finds

17



Im = I  ,A 2 V2 0 2cN (4.7)
0

-1
The first term on the RHS is always positive, and is at least as large as T
as defined in (1.1) These statements follow from the equation (2.4)

satisfied by *o:

2V2 0 .(o' (4.8)
A o
0

In an aurora *o- is positive, and V0 oVN is generically negative, so

A2  is 0 E -0 0
Ao2 00 is positive and greater than the potential drop 0o-0E.

This ionization-driven instability ultimately will be controlled by

recombination, transport, or decrease of the parallel potential drop.

Transport phenomena are important at large k, where it can be seen from (4.6)

that the ionization term (-r) is small. At large k (kA 0 1) we find:
~ 0

Im 0) , No (V EoV - k.V Eok-V) N - 2c.N 0 (4.9)

where k is the unit vector in the direction of k. The terms in VEo can be of

either sign, a negative contribution representing damping of the ionization-

driven instability. A positive term is just a version of the standard E X B

gradient-drift instability (e.g., Linson and Workman, 1970]. In any case, the

magnitude of this sort of term in Im w is of the order of the inverse drift-
-1

transport time TD  (see (1.2)). Simple geometric considerations show that
terms of both signs are likely to be present in a fully developed aurora,

that is, one with significant E-W gradients.

We can roughly estimate the cross-over scale length A. where drift-

transport and ionization contributions to Im co are comparable, by equating
-1

these contributions from (4.6) and solving for k - AD- . In so doing, assume

the scale lengths of N and 0 are the same, and ignore geometrical factors.

One then finds

A1 e A o 0 (4.10)

D B Q o B r i Po

where in the second equality we used (2.7). For the nominal parameter values

given in Section 1, AD is roughly (1/2)Ao, but this depends somewhat on the

auroral energy. Low energy auroras have smaller values for both r and E
Po
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than high-energy auroras, because they operate at higher altitudes and because

they make fewer electron-ion pairs.

It is interesting to consider now the inhomogeneous problem, in which the

perturbation *El in the driving magnetospheric potential is retained. In

earlier work [Chiu et al., 1981] it was observed that in the static adiabatic

auroral model, small-scale (kA > 1) fluctuations in 0E were shielded from the

ionosphere, while fluctuations with kA > 1 were not shielded. This makes it

difficult to understand small-scale auroral ionospheric fluctuations as being

straightforwardly driven from the magnetosphere. Weimer et al. [1985) have

confirmed this shielding effect experimentally. Making the approximations of

a time-stationary aurora and constant Ep , they used the simplified relation

which then follows from (2.4), or equivalently from (4.4) by setting N1 and

VN = 0:
-0O

€El1
(  = 2 2 (4.11)
1 l+k2 A

0
(where i is the Fourier transform of 0, etc.) and found it to be reasonably

well-satisfied. However, at non-zero frequencies this shielding effect should
diminish. The reduction of shielding can be seen even at the low frequencies

of interest in the present report , by solving the full inhomogeneous equations

(4.3,4). We give the results only for kA 0 1:
0

______ r 1 ,[V + A0 2 QkV (4.12)1(k) E1 (k,O)1 A 2 Q

k2A 2 1 + _k.Eo i i N0 e o
0

where T (defined in (4.9)) is the large-k limit of Im w. In the

approximations used by Weimer et al. [1985], namely YN = 0, r - 0, one has- o
y - 0 and so (4.12) is just the large-k limit of (4.11). But when these

approximations are not valid, the terms in square brackets come into play.

For example, in an aurora with no E-W variation (k - a - 0) we find thaty y
(4.12) is, for large k:

V
(k, Eo 1 (4.13)

1Ik  " El'' ) (()-iY) kA 2

-i
which decreases only like k
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. INTEGRABLE MODEL OF TRANSPORT-IONIZATION COMPETITION

As discussed in the Introduction, when a - 0 (no recombination)

equilibrium is generally impossible, because there are regions where transport

is too small to balance ionization. Here we illustrate what goes on in the

vicinity of a zero in the transport term V E*VN in (2.5) when a = 0, by

postulating that N and 0 in (2.4,5) are no more than quadratic in spatial

variables, with time-dependent coefficients. Remarkably, these nonlinear

partial differential equations fall apart into four integrable ordinary

differential equations in time, whose solutions show the slow wandering of

auroral features discussed in the Introduction.

The particular spatial dependence used to get these results is not the

most general quadratic dependence. We briefly study the most general

quadratic case in the Appendix, and find four nonlinear first-order

differential equations in the time variable. These equations are not

obviously integrable. If they are in fact not integrable, they may develop

chaotically, an interesting possibility which will require computer studies.

Consider now Eqs. (2.4,5) with a = 0. We seek a solution of the form

+ *lx + *2y + 3x
2  (5.1)

NN +N 1
x + N2y + Nx

2  (5.2)

OE E * x  (5.3)

Here all the functions with tildes depend on time only. Recall that the x-

variable runs north-south and y runs east-west. We require that the driving

potential *E be positive, and that N3 be negative, so that there is a density

peak at x - 0 and a horizontal electric field with negative divergences. We

also require that * > 0 so that near the origin (x=y=0) the ionospheric

potential exceeds E , which has a minimum there. This is a typical

configuration for auroral arcs. In a static arc (stabilized, e.g., by

recombination) one usually looks for 0 to have a minimum and N a maximum at

the same point where 0 E has a minimum; an example is Fig. 1 (adapted from

Cornwall [1988]). We can arrange this as an initial condition by setting

(0)- N(0) - 0 in (5.1,2), but we will see that as time passes, the extrema
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2

0

-2 -1 0 1 2

Fig 1. Potentials and Density at y= 0 for a Steady-State Solution with Recombination (after
Cornwall [1988j). The return-current region is displaced to Ix - oo , where N re-
turns to its asymptotic value of 0.1 (in units of the density at x -0) and , = 4 . The
distance scale is in units of A0.
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of 0 and N wander away from each other and from the minimum of 0 E, thus

rearranging the relative strengths of ionization sources and transport.
2

The ansatz (5.1,2,3) can be generalized by adding terms -xy or y ; this

case is briefly discussed in the Appendix, but we know of no way of

integrating this general case.

Using the ansatz in Eq. (2.4) yields four relations. In writing these

relations we temporarily drop the tildes on the variables, so that 4 and N

refer to only the spatially constant parts of what we usually mean by these

names. These relations are:

N
203N + NI1  + N202  0 (5.4)

0
N

40N+ 2N3*1 = (5.5)
3 1 3 A 2  1

N0
20N (5.6)

A 0 A

N0

3N2 Ao 2 02156

603N N 2 ( 0 3-E (5.7)
A
0

Here we have introduced an arbitrary density N and length scale A , related
0 0

by

2
A - (N=N)/Q (5.8)
0 P o

Eq. (2.5) similarly yields four differential equations:

c NQ 1 (5.9
N+ B (N2 1 - N0 0 (5.9)

N + L_- (_QN 0r (5.10)
1 B 1N2 0 3 - 2N3 e1

N2 2 (5.11)

N - E- (03-E (5.12)
3 e 3E

We can eliminate all the O-variables in terms of the N-variables and 0 E, using

Eqs. (5.4-7):
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2A 2 2 N N+ AN 2  W -i 0 (.
N "N'A 1- 6 N

No o No A 2 3

01 " 4N1 -E - 2N3  1 - 6A 3 N23] 0I5 4

2 0

4N 2 ) N-- (5. 14)

2AoN N -1
N 2 1 - 6A 2  

(5.15)
2 o- oN

0 0

03 - OE( 1 - 6A 2  3 (5.16)3 (o N--( . 6

0

These equations can be partially non-dimensionalized by agreeing to measure

all densities in units of N and all lengths in units of A , in which case the

explicit factors of N A in (5.13-16) should be set to 1; N and the N.

(i = 1,2,3) are dimensionless; and_0E is the driving potential at x = A . We

adopt these scalings in writing the differential equations (5.9-12) in terms

of N and the N,:1

N NO E  6N 3  (.7
N3 eNo 1I-6N 3 1.7

rQO E  2N 2

N2 "eN 1-6N3
0 3

1 4 4r0 E N1  , 2c CE
1 - 3  12 3 J- i N 2 (1-2N)f (5. 19)

1 -N3 e -N3BA 2 32
2c*E  NW 2 (1+2N 3 ) 2FQ1+ 4N12

- -+ - +-I_2NBA 2 (1-2N3 1 )(1-6N 3 1  eN 0 1 2 -13

0

Note that N3 is necessarily negative, so there are no singularities in

(5.17-20). These equations are written in the order in which they will be

solved, and are manifestly integrable. First, (5.17) is solved for N3  after

introducing the scaled time T:

~eN- fn dr' 0 Elt') ,(5.21)
!00

where it will be recalled that * E(t) has the meaning of the physical driving

potential in (5.3) evaluated at x - A , i.e.,
0

2-~
OE(t) - A 0 E(t) (5.22)E ~ o E

The solution of (5.17) is given in the implicit form
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1 tn N0 - N3 + N3 (0) - T (5.23)6 N 3(0) 3 3

with N 3 (0) < 0.

Combining (5.17) and (5.18) yields

N2 . N3  (0) N3 11/3
N- -N ; N2 = N2 0 3 0  (5.24)

N2 3N 3  2 2 N 3(0)

Given N2 and N , (5.19) for N1 can be integrated in principle; in practice,

this must be done numerically. Finally, with all the N. known, (5.20) is
1

integrated for N.

These last two equations contain the squared ratio

S D 2/Ao2 (5.25)

of the cross-over length AD introduced in (4.10) and the inverted-V scale V .

This is also the ratio of the ionization rate T (see (1.1)) to the nominal
-1

transport rate T (see (1.2)). We will treat t as a fixed parameter,

although in principle it depends on the auroral potential drop 0-OE' This

comes about because A (see (2.7)) depends on the Pedersen conductivity, which0

depends on the collision frequency, which depends on the average auroral

deposition altitude in the ionosphere, which depends on the auroral energy.

Since the auroral energy is in part controlled by t, there is an interesting

feedback loop which we can only explore by going beyond the simplification of

height-integration. The nominal value of t is somewhat less than one, but we

expect that t will evolve to a value close to one as transport processes begin

to be important on spatial scales comparable to A,.
Before turning to the numerical solution of (5.19,20) we note that the

four differential equations can be exactly integrated in the limit IN 31 ( 1,

in which case the solutions show a linear instability of the long-wave type

discussed in Section 4:

6 r
N 3 - N 3(0) e (5.26)

N2 - N 2(0) e (5.27)

N, " N1(0) e4T + tN2 (0) (e 2-e 
4 ) (5.28)
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2N(0) e N 2  (0)- ( + ) ( e4-1 ) 2 42

N2(0) [NI(0) -4N2(0)1 (e 6-1) + [N1(0) - 4N 2 (0)] 2  (e8 -1) (5.29)

These solutions hold for arbitrary N1 and N2 , but require N3 4 1, and thus

N 3(0) < 1, T < 1/6. Clearly, this small-N 3 case is an instability driven by

the auroral ionization source.

Much more interesting is the large IN31 case, with N3 < -1. This case is

relevant when the auroral ionization source has produced a central ionospheric

density which is large compared to the unperturbed density outside the aurora,

and there are thus large gradients of density; they build up the transport

terms, and allow the aurorally produced ionization to be carried away. We

study this case by ignoring cvnstants in terms like 1-6N 3 -- 6N3 etc., and

find for N. the power-law solutions:
1

N 3 - -T + O(Xn T) (5.30)

1/3 -2/3
N2 = AT + O(Z ) (5.31)

N1 . A 4/3 1/3 (5.32)
1, 2 'T +o~ 0 ) 5.2

where A is a constant of integration, and T now stands for the scaled time of

(5.21) plus the large positive constant IN 3(0) I.

As for N, substituting the above results in (5.20) yields a cancellation

of the leading powers (which, if they had not cancelled, would have yielded

N - 5/3). This cancellation is a result of balance between ionization growth

and transport loss, which comes about as the spatially dependent terms in the

density, namely the N. times powers of x or y, grow.1

Further analytic progress seems to be impossible, so we turn to numerical

calculations. we give results for the following case:

N(0) - 1, N1(0) - 0,(0) = 1, N 3(0) - -1, , - 1/2 (5.33)

This corresponds to an auroral region where the initial potentials and density

are symmetric around x - 0 (recall that x is a latitudinal distance variable),

but have an E-W gradient as indicated by N 2(0) and 2(0) (- 2/7, for our
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parameters) . We plot the initial density and potentials at y = t = 0 in Fig.

2. Here distances are measured in units of A , density scales with N , the0 0

density at x = 0, and the unit of potential is the auroral driving potential

OE evaluated at a distance A from the origin. The return-current region

(where 0-0E 0) sets in at IxI = xc = .882, at which point N returns its

unperturbed value of .22. The plots in Fig. 2 qualitatively resemble both

real auroral profiles and the exact stationary solutions of Cornwall (1988],

as hown in Fig. 1. (Figs. 1 and 2 cannot be qualitatively compared, because

of differences in normalizations, vertical and horizontal scales, and in

actual physics.)

Fig. 3 shows the potentials and density at y = 0 and scaled time T = 2 (T

is defined in (5.21)). One sees that N has increased by about a factor of

two, and its peak has shifted to the left, while the ionospheric potential 0

is both decreased and flattened, while its minimum has moved to the right,

opposite to the density shift. For other values of y at T = 2, add 1.41y to N

and 0.16y to 0. There is, of course, no explicit indication of the generation

of shorter length scales in Fig. 3, because the spatial dependence remains

quadratic at all times. But an indication of the global breakdown of the

quadratic ansatz can be seen in the minor inconsistencies between the position

of the return current as determined by 0 = 0 E and by return of N to the

undisturbed value of 0.22. One expects, as the perturbative analysis of

Section 4 suggests, that generalizing the quadratic ansatz to repair the

return-current inconsistencies will involve the unstable generation of shorter

length scales. However, a linearized analysis at T = 2 is clearly

inappropriate; the linearized solutions in (5.26-29) at T = 2 are far too

large to be consistent with linear perturbation theory. What we would expect

to see in a full-scale numerical analysis is that major features of the aurora

(density maxima, potential minima) wander around through a finite fraction of

A in times of order T I or TD. or some tens of seconds, while at the same time

short-wavelength features begin to grow. All this happens even if the driving

potential *E remains constant in time, as in our example. Naturally, in the

real world *E also changes noticeably on these time scales, which further

complicates the issue. Our point here is that such variations in *E are not
necessary to produce auroral dynamics resembling what we in fact see, and tnat

one cannot infer much about the dynamics of 0E from the behavior of the

auroral ionosphere on time scales of tens of seconds.
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Fig 2. Potentials and Density at T = 0, y = 0 for a Time-Dependent Solution with no Re-
combination (q'E Normalized to Unity at IxI = 1). The return-current region is at lxi
= 0.88, where N has the ambient value 0.22 (in units of ;hc density at x = 0). The
distance scale is in units of A.
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Fig 3. Potentials and Density at T = 2, y = 0 for a Time-Dependent Solution with no Re-
combination (4E Normalized to Unity at ixi = 1). The return-current region is at lxi
= 0.88, where N has the ambient value 0.22 (in units of the density at x = 0). The
distance scale is in units of A0 . The density maximum is shifted to the left and in-
creased, while the potential is decreased and flattened, with its minimum moving to
the right.
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6. DISCUSSION

In this report we have investigated a new class of auroral-ionosphere

instabilities driven by ionization from auroral electrons, and involving a

parallel current which is linear in the ionosphere-magnetosphere potential

drop. We emphasize that it is not the parallel current per se which drives

the instability, but rather the ionization that it produces. The instability

grows on a time scale of some tens of seconds (we assume that this is somewhat

shorter than the nominal recombination time scale, which is true when auroral-

ionosphere densities are not too large). This is comparable to transport time

scales, but we have shown that there are necessarily regions in an aurora

where transport alone cannot relieve the buildup of ionization, at least on

the original (inverted-V) spatial scales of the aurora. Ultimately,

dissociative recombination, proportional to the square of the density, will

stabilize the produced ionization, but until then the aurora responds

dynamically by lowering the magnetosphere-ionosphere potential drop; by

generating small-scale fluctuations which are effective in transport; or by

moving the region of low transport toward a region of lower density.

A linear local instability analysis of this problem is heuristically

useful, but very limited practically because of the presence of zeroth-order

density gradients. We supplant the linear analysis with a nonlinear analysis

based on the hypothesis of quadratic spatial variations of potentials and

density. This results in the replacement of the original pair of coupled

nonlinear partial differential equations by four coupled, nonlinear ordinary

differential equations. It is remarkable and unexpected that these equations

are completely integrable. (A slight modification of the spatial variation

leads to four coupled ordinary differential equations which are not obviously

integrable; these may have chaotic solutions.) The solutions to the

integrable equations reveal the expected transport phenomena discussed above.

In this report we have only discussed the case of a time-stationary driving

magnetospheric potential, which leads to unstable auroral fluctuations on time

scales of tens of seconds. The next step is to consider the case of time-

dependent magnetospheric fluctuations, associated either with externally

driven ULF waves in the appropriate frequency range (Pc 4-5; see Engbretson et

al. [1986]) or as a magnetospheric feedback response to fluctuations in the

auroral ionosphere.
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APPENDIX

Here we very briefly describe a generalization of the integrable model of

Section 5, which uses a more general quadratic ansatz for 0, N, and *E rather
than the specialized forms (5.1,2,3). The only point to be made is that the

resulting four nonlinear differential equations in time are not obviously

integrable, and so -heir solution may be chaotic.

The ansatz we use is

= (t) + x.A..x. (A.1)
1 13 3

N = N(t) + x.D..x. (A.2)
113 3

OE = ioEijXj (A.31

where A, D, and *E are symmetric 2 x 2 matrices depending on t, and the two-
dimensional vector x. has components xI = x, x2 = y; repeated indices are

summed over. Note that this is not the most general quadratic ansatz, since

terms linear in x. could be added to the RHS of (A.1,2,3). We need not deal
1

with this additional complication, which only reinforces the lack of obvious

integrability.

As in Section 5, we drop the tildes on the RHS of (A.1,2,3) and we scale

lengths with A and densities with N (see 5.8)). Then in the formulas below0 0

N and the matrix D are dimensionless, while A and *E have the dimensions of
potential. Inserting the ansatz into the basic equations (2.4,5) with a = 0

yields:

Tr A - i/2N (A.4)

D Tr A + {A,D} = (A-0E) (A.5)

N _. (A.6)
eN

0

+ 2c (AED-DEA) - (A-0E) (A.7)

B2 N 0e EBA o
0

In these equations,

A-1



LABORATORY OPERATIONS

The Aerospace Corporation functions as an "architect-engineer" for national security
projects, specializing in advanced military space systems. Providing research support, the
corporation's Laboratory Operations conducts experimental and theoretical investigations that
focus on the application of scientific and technical advances to such systems. Vital to the success
of these investigations is the technical staff's wide-ranging expertise and its ability to stay current
with new developments. This expertise is enhanced by a research program aimed at dealing with
the many problems associated with rapidly evolving space systems. Contributing their capabilities
to the research effort are these individual laboratories:

Aerophysics Laboratory: Launch vehicle and reentry fluid mechanics, heat transfer
and flight dynamics, chemical and electric propulsion, propellant chemistry, chemical
dynamics, environmental chemistry, trace detection; spacecraft structural mechanics,
contamination, thermal and structural control: high temperature thermomechanics, gas
kinetics and radiation; cw and pulsed chemical and excimer laser development,
including chemical kinetics, spectroscopy, optical resonators, beam control, atmos-
pheric propagation, laser effects and countermeasures.

Chemistry and Physics Laboratory: Atmospheric chemical reactions, atmospheric
optics, light scattering, state-specific chemical reactions and radiative signatures of
missile plumes, sensor out-of-field-of-view rejection, applied laser spectroscopy, laser
chemistry, laser optoelectronics, solar cell physics, battery electrochemistry, space
vacuum and radiation effects on materials, lubrication and surface phenomena,
thermionic emission, photosensitive materials and detectors, atomic frequency stand-
ards, and environmental chemistry.

Electronics Research Laboratory: Microelectronics, solid-state device physics,
compound semiconductors, radiation hardening, electro-optics. quantum electronics,
solid-state lasers, optical propagation and communications; microwave semiconductor
devices, microwavc/millimctcr wave measurements, diagnostics and radiometry, micro-
wave/millimeter wave thermionic devices; atomic time and frequency standards;
antennas, rf systems, electromagnetic propagation phenomena, space communication
systems.

Materials Sciences Laboratory: Development of new materials: metals, alloys,
ceramics, polymers and their composites, and new forms of carbon; nondestructive
evaluation, component failure analysis and reliability; fracture mechanics and stress
corrosion; analysis and evaluation of materials at cryogenic and elevated temperatures
as well as in space and enemy-induced environments.

Space Sciences Laboratory: Magnetospheric, auroral and cosmic ray physics,
wave-particle interactions, magnetospheric plasma waves; atmospheric and ionospheric
physics, density and composition of the upper atmosphere, remote sensing using
atmospheric radiation; solar physics, infrared astronomy, infrared signature analysis;
effects of solar activity, magnetic storms and nuclear explosions on the earth's
atmosphere, ionosphere and magnetosphere; effects of electromagnetic and particulate
radiations on space systems; space instrumentation.


